BCA Semester-IV (Hons.) Examination, 2022-23
 BACHELOR OF COMPUTER APPLICATION

Course ID : 43313
 Course Code : CC-10

Course Title : Theory of Computation

Time : 2 Hours
Full Marks: 50
The figures in the right-hand margin indicate marks.
Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

GROUP-A

1. Choose the best alternative from the following options for each questions:
$1 \times 10=10$
i) The language that a push down automation accepts in which the stack stays limited to about 10 items is describe best as:
a) Recursive
b) Deterministic Context Free
c) Regular
d) Context free
e) None of the above
ii) Moore machine is an application of:
a) Finite automata without input
b) Finite automata with output
c) Non-finite automata with output
d) Non-finite automata without input
e) None of the above
iii) Given: $\mathrm{L}_{1}=\left\{\mathrm{x} \varepsilon \sum^{*} \mid \mathrm{x}\right.$ contains even no's of 0 's $\}$ $\mathrm{L}_{2}=\left\{\mathrm{x} \varepsilon \sum^{*} \mid \mathrm{X}\right.$ contains odd no's of 1's $\}$

No of final states in language $L_{1} U_{L_{2}}$?
a) 1
b) 2
c) 3
d) 4
e) None of the above
iv) If we consider an arbitrary NFA with N states in total, the maximum number of states that are there in an equivalent DFA is at least-
a) N !
b) 2 N
c) N^{2}
d) 2^{N}
e) None of the above.
v) How many states are presents in DFA constructed to accept "the set of all strings ending in 010"?
a) 3
b) 4
c) 5
d) 6
e) None of the above
vi) The logic of pumping lemma is a good example of:
a) Pigeon-Hole principal
b) Divide and Conquer technique
c) Recursion
d) Iteration
e) None of the above
vii) Context Free grammar can be recognized by:
a) Finite state automation
b) 2 -way linear bounded automata
c) Push down automata
d) Both ' b ' and ' c '
e) None of the above
viii) Which of the following is not a sequential circuit?
a) Flip flop
b) Counter
c) Shift register
d) Encoder
e) None of the above
ix) Consider that we have a G ambiguous grammar along with its D disambiguated version. If the language that is recognized by these two grammars is denoted by $L(G)$ and $L(D)$, then which one of this will be true?
a) $\quad \mathrm{L}(\mathrm{D})=\mathrm{L}(\mathrm{G})$
b) $\quad \mathrm{L}(\mathrm{D}) \subset \mathrm{L}(\mathrm{G})$
c) $\mathrm{L}(\mathrm{D})$ is empty
d) $\quad \mathrm{L}(\mathrm{D}) \supset \mathrm{L}(\mathrm{G})$
e) None of the above
x) Which one of these given regular expression isn't equivalent to this regular expression: $(\mathrm{m}+\mathrm{n}+\mathrm{o})^{*}$?
a) $\left(m * n^{*}+o^{*}\right)^{*}$
b) $\left((\mathrm{mn})^{*}+\mathrm{o}^{*}\right)^{*}$
c) $\left(\mathrm{m} * \mathrm{n} * \mathrm{o}^{*}\right)^{*}$
d) $\left(\mathrm{m}^{*}+\mathrm{n}^{*}+\mathrm{o}^{*}\right)^{*}$
e) None of the above

GROUP-B

2. Answer any five questions:
i) Define finite automata.
ii) What do you mean by language? Explain it with example.
iii) Define left linear grammar.
iv) Define NPDA.
v) "The set of all odd integers is a monoid under multiplication"- Test whether the statement is true or false? Justify your answer.
vi) What do you mean by Moore machine? Explain with example.
vii) What do you mean by degree of a graph?
viii) Explain terminal and non-terminal symbol of a grammar.

GROUP-C

3. Answer any four questions:
$5 \times 4=20$
i) Show that $L=\left\{a^{p} \mid p\right.$ is a prime $\}$ is not regular.
ii) Show that M_{1} and M_{2} defined by the figure below are not equivalent.

(a)

(b)

Here (a) automaton M_{1} and (b) automaton M_{2}.
iii) Construct a minimum state automaton equivalent to a DFA whose transition table is given below: (F_{3} and ${ }^{*} \mathrm{q}_{4}$ indicates that final states)

States	\mathbf{a}	\mathbf{b}
$\rightarrow \mathrm{q}_{0}$	q_{1}	q_{2}
q_{1}	q_{4}	q_{3}
q_{2}	q_{4}	q_{3}
${ }^{*} \mathrm{q}_{3}$	q_{5}	q_{6}
${ }^{*} \mathrm{q}_{4}$	q_{7}	q_{6}
q_{5}	q_{3}	q_{6}
q_{6}	q_{6}	q_{6}
q_{7}	q_{4}	q_{6}

iv) Write a short note on recursive and recursively enumerable sets.
v) Define ambiguous grammar. Show that the following grammar is ambiguous: $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \varepsilon$
vi) Construct a NFA to accept strings of a's and b's having substring aba.

GROUP-D

4. Answer any one question: $10 \times 1=10$
i) a) Explain the block diagram of PDA with its components specification, language and transition table.
b) Draw FA for the following regular expression: $7+3$

$$
(\mathrm{a}+\mathrm{b})^{*}(\mathrm{ab})^{*}
$$

ii) a) Show that $L=\left\{a^{p} \mid p\right.$ is a prime $\}$ is regular.
b) Design a sequence detector that produces an output ' 1 ' whenever the non over lapping sequence 1011 is detected. The state diagram is given below:
$3+7$

\qquad

