22-23/43313

525/BCA

BCA Semester-IV (Hons.) Examination, 2022-23 BACHELOR OF COMPUTER APPLICATION Course ID : 43313 Course Code : CC-10

Course Title : Theory of Computation

Time : 2 Hours Full Marks : 50

The figures in the right-hand margin indicate marks. Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

GROUP-A

- 1. Choose the best alternative from the following options for each questions: $1 \times 10=10$
 - The language that a push down automation accepts in which the stack stays limited to about 10 items is describe best as:
 - a) Recursive
 - b) Deterministic Context Free
 - c) Regular
 - d) Context free
 - e) None of the above

- ii) Moore machine is an application of:
 - a) Finite automata without input
 - b) Finite automata with output
 - c) Non-finite automata with output
 - d) Non-finite automata without input
 - e) None of the above
- iii) Given: $L_1 = \{x \in \Sigma^* | x \text{ contains even no's of 0's} \}$

 $L_2 = \{x \in \Sigma^* | x \text{ contains odd no's of 1's} \}$

No of final states in language $L_1 U L_2$?

- a) 1
- b) 2
- c) 3
- d) 4
- e) None of the above
- iv) If we consider an arbitrary NFA with N states in total, the maximum number of states that are there in an equivalent DFA is at least
 - a) N!
 - b) 2N
 - c) N^2
 - d) 2^N
 - e) None of the above.

[Turn Over]

525/BCA

[2]

- v) How many states are presents in DFA constructed to accept "the set of all strings ending in 010"?
 - a) 3
 - b) 4
 - c) 5
 - d) 6
 - e) None of the above
- vi) The logic of pumping lemma is a good example of:
 - a) Pigeon-Hole principal
 - b) Divide and Conquer technique
 - c) Recursion
 - d) Iteration
 - e) None of the above
- vii) Context Free grammar can be recognized by:
 - a) Finite state automation
 - b) 2 -way linear bounded automata
 - c) Push down automata
 - d) Both 'b' and 'c'
 - e) None of the above

viii) Which of the following is not a sequential circuit?

- a) Flip flop
- b) Counter
- c) Shift register
- d) Encoder
- e) None of the above
- ix) Consider that we have a G ambiguous grammar along with its D disambiguated version. If the language that is recognized by these two grammars is denoted by L (G) and L (D), then which one of this will be true?
 - a) L(D) = L(G)
 - b) $L(D) \subset L(G)$
 - c) L (D) is empty
 - d) $L(D) \supset L(G)$
 - e) None of the above
- x) Which one of these given regular expression isn't equivalent to this regular expression: (m+n+o)*?
 - a) (m*n*+o*)*
 - b) ((mn)*+o*)*
 - c) (m*n*o*)*
 - d) $(m^{*+n^{*}+o^{*}})^{*}$
 - e) None of the above

[Turn Over]

525/BCA

GROUP-B

- 2. Answer any five questions: $2 \times 5 = 10$
 - i) Define finite automata.
 - ii) What do you mean by language? Explain it with example.
 - iii) Define left linear grammar.
 - iv) Define NPDA.
 - v) "The set of all odd integers is a monoid under multiplication"- Test whether the statement is true or false? Justify your answer.
 - vi) What do you mean by Moore machine? Explain with example.
 - vii) What do you mean by degree of a graph?
 - viii) Explain terminal and non-terminal symbol of a grammar.

GROUP-C

- 3. Answer any four questions: $5 \times 4 = 20$
 - i) Show that $L = \{a^p | p \text{ is a prime}\}\$ is not regular.

ii) Show that M₁ and M₂ defined by the figure below are not equivalent.

Here (a) automaton M_1 and (b) automaton M_2 .

iii) Construct a minimum state automaton equivalent to a DFA whose transition table is given below: $(*q_3 \text{ and } *q_4 \text{ indicates that final states})$

States	a	b
$\rightarrow q_0$	q_1	q_2
q ₁	q_4	q ₃
q ₂	q_4	q ₃
q ₂ *q ₃	q ₅	q ₆
*q ₄	q ₇	q ₆
q ₅	q ₃	9 ₆
q ₆	q ₆	q ₆
q ₇	q_4	9 ₆

525/BCA

- iv) Write a short note on recursive and recursively enumerable sets.
- v) Define ambiguous grammar. Show that the following grammar is ambiguous: $S \rightarrow aSbS| bSaS|\epsilon$
- vi) Construct a NFA to accept strings of a's and b's having substring aba.

GROUP-D

- 4. Answer any **one** question: $10 \times 1=10$
 - a) Explain the block diagram of PDA with its components specification, language and transition table.
 - b) Draw FA for the following regular expression: 7+3

(a+b)*(ab)*

- ii) a) Show that $L = \{a^p | p \text{ is a prime}\}$ is regular.
 - b) Design a sequence detector that produces an output '1' whenever the non over lapping sequence 1011 is detected. The state diagram is given below: 3+7

